Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans.

Identifieur interne : 000056 ( Main/Exploration ); précédent : 000055; suivant : 000057

Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans.

Auteurs : Ning Jiang [République populaire de Chine] ; Jun Cui [République populaire de Chine] ; Xinxin Hou [République populaire de Chine] ; Guanglei Yang [République populaire de Chine] ; Yu Xiao [République populaire de Chine] ; Lu Han [République populaire de Chine] ; Jun Meng [République populaire de Chine] ; Yushi Luan [République populaire de Chine]

Source :

RBID : pubmed:32432801

Abstract

Long non-coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non-coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre-miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl-lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain- and loss-of-function experiments and RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE) also revealed that Sl-miR482a was negatively involved in tomato resistance by targeting Sl-NBS-LRR genes and that silencing of Sl-NBS-LRR1 decreased tomato resistance. Sl-lncRNA15492 inhibited the expression of mature Sl-miR482a, whose precursor was located within the antisense sequence of Sl-lncRNA15492. Further degradome analysis and additional RLM-5' RACE experiments verified that mature Sl-miR482a could also cleave Sl-lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl-lncRNA15492 and Sl-miR482a mutually inhibit the maintenance of Sl-NBS-LRR1 homeostasis during tomato resistance to P. infestans.

DOI: 10.1111/tpj.14847
PubMed: 32432801


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans.</title>
<author>
<name sortKey="Jiang, Ning" sort="Jiang, Ning" uniqKey="Jiang N" first="Ning" last="Jiang">Ning Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Jun" sort="Cui, Jun" uniqKey="Cui J" first="Jun" last="Cui">Jun Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xinxin" sort="Hou, Xinxin" uniqKey="Hou X" first="Xinxin" last="Hou">Xinxin Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Guanglei" sort="Yang, Guanglei" uniqKey="Yang G" first="Guanglei" last="Yang">Guanglei Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Yu" sort="Xiao, Yu" uniqKey="Xiao Y" first="Yu" last="Xiao">Yu Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Lu" sort="Han, Lu" uniqKey="Han L" first="Lu" last="Han">Lu Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meng, Jun" sort="Meng, Jun" uniqKey="Meng J" first="Jun" last="Meng">Jun Meng</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luan, Yushi" sort="Luan, Yushi" uniqKey="Luan Y" first="Yushi" last="Luan">Yushi Luan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32432801</idno>
<idno type="pmid">32432801</idno>
<idno type="doi">10.1111/tpj.14847</idno>
<idno type="wicri:Area/Main/Corpus">000187</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000187</idno>
<idno type="wicri:Area/Main/Curation">000187</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000187</idno>
<idno type="wicri:Area/Main/Exploration">000187</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans.</title>
<author>
<name sortKey="Jiang, Ning" sort="Jiang, Ning" uniqKey="Jiang N" first="Ning" last="Jiang">Ning Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Jun" sort="Cui, Jun" uniqKey="Cui J" first="Jun" last="Cui">Jun Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xinxin" sort="Hou, Xinxin" uniqKey="Hou X" first="Xinxin" last="Hou">Xinxin Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Guanglei" sort="Yang, Guanglei" uniqKey="Yang G" first="Guanglei" last="Yang">Guanglei Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Yu" sort="Xiao, Yu" uniqKey="Xiao Y" first="Yu" last="Xiao">Yu Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Lu" sort="Han, Lu" uniqKey="Han L" first="Lu" last="Han">Lu Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meng, Jun" sort="Meng, Jun" uniqKey="Meng J" first="Jun" last="Meng">Jun Meng</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luan, Yushi" sort="Luan, Yushi" uniqKey="Luan Y" first="Yushi" last="Luan">Yushi Luan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Bioengineering, Dalian University of Technology, Dalian, 116024</wicri:regionArea>
<wicri:noRegion>116024</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Long non-coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non-coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre-miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl-lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain- and loss-of-function experiments and RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE) also revealed that Sl-miR482a was negatively involved in tomato resistance by targeting Sl-NBS-LRR genes and that silencing of Sl-NBS-LRR1 decreased tomato resistance. Sl-lncRNA15492 inhibited the expression of mature Sl-miR482a, whose precursor was located within the antisense sequence of Sl-lncRNA15492. Further degradome analysis and additional RLM-5' RACE experiments verified that mature Sl-miR482a could also cleave Sl-lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl-lncRNA15492 and Sl-miR482a mutually inhibit the maintenance of Sl-NBS-LRR1 homeostasis during tomato resistance to P. infestans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32432801</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans.</ArticleTitle>
<Pagination>
<MedlinePgn>1561-1574</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14847</ELocationID>
<Abstract>
<AbstractText>Long non-coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non-coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre-miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl-lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain- and loss-of-function experiments and RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE) also revealed that Sl-miR482a was negatively involved in tomato resistance by targeting Sl-NBS-LRR genes and that silencing of Sl-NBS-LRR1 decreased tomato resistance. Sl-lncRNA15492 inhibited the expression of mature Sl-miR482a, whose precursor was located within the antisense sequence of Sl-lncRNA15492. Further degradome analysis and additional RLM-5' RACE experiments verified that mature Sl-miR482a could also cleave Sl-lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl-lncRNA15492 and Sl-miR482a mutually inhibit the maintenance of Sl-NBS-LRR1 homeostasis during tomato resistance to P. infestans.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Xinxin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Guanglei</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luan</LastName>
<ForeName>Yushi</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0001-9397-9171</Identifier>
<AffiliationInfo>
<Affiliation>School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Phytophthora infestans </Keyword>
<Keyword MajorTopicYN="Y">lncRNA</Keyword>
<Keyword MajorTopicYN="Y">miRNA</Keyword>
<Keyword MajorTopicYN="Y">oligonucleotide-directed mutagenesis</Keyword>
<Keyword MajorTopicYN="Y">tomato</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32432801</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14847</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Addo-Quaye, C., Miller, W. and Axtell, M.J. (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 25, 130-131.</Citation>
</Reference>
<Reference>
<Citation>Baek, D., Park, H.C., Kim, M.C. and Yun, D.J. (2013) The role of Arabidopsis MYB2 in miR399f-mediated phosphate-starvation response. Plant Signal. Behav. 8, e23488.</Citation>
</Reference>
<Reference>
<Citation>Canto-Pastor, A., Santos, B.A.M.C., Valli, A.A., Summers, W., Schornack, S. and Baulcombe, D.C. (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc. Natl Acad. Sci. USA, 116, 2755-2760.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Luan, Y., Jiang, N., Bao, H. and Meng, J. (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J. 89, 577-589.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Jiang, N., Meng, J., Yang, G., Liu, W., Zhou, X., Ma, N., Hou, X. and Luan, Y. (2019) LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato- Phytophthora infestans interactions. Plant J. 97, 933-946.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Jiang, N., Hou, X., Wu, S., Zhang, Q., Meng, J. and Luan, Y. (2020) Genome-wide identification of lncRNAs and analysis of ceRNA networks during tomato resistance to Phytophthora infestans. Phytopathology, 110, 456-464.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Jiang, N., Zhou, X., Hou, X., Yang, G., Meng, J. and Luan, Y. (2018a) Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta, 248, 1487-1503.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Xu, P., Meng, J., Li, J., Jiang, N. and Luan, Y. (2018b) Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. Theor. Appl. Genet. 131, 787-800.</Citation>
</Reference>
<Reference>
<Citation>de Vries, S., Kukuk, A., von Dahlen, J.K., Schnake, A., Kloesges, T. and Rose, L.E. (2018) Expression profiling across wild and cultivated tomatoes supports the relevance of early miR482/2118 suppression for Phytophthora resistance. Proc. Boil. Sci. 285, 20172560.</Citation>
</Reference>
<Reference>
<Citation>de Vries, S., Kloesges, T. and Rose, L.E. (2015) Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the solanaceae. Genome Biol. Evol. 7, 3307-3321.</Citation>
</Reference>
<Reference>
<Citation>Fry, W.E., Birch, P.R.J., Judelson, H.S. et al. (2015) Five reasons to consider phytophthora infestans a reemerging pathogen. Phytopathology, 105, 966-981.</Citation>
</Reference>
<Reference>
<Citation>Gai, Y.P., Yuan, S.S., Zhao, Y.N., Zhao, H.N., Zhang, H.L. and Ji, X.L. (2018) A novel lncRNA, MuLnc1, associated with environmental stress in Mulberry (Morus multicaulis). Front. Plant Sci. 9, 669.</Citation>
</Reference>
<Reference>
<Citation>Gao, C., Ju, Z., Cao, D., Zhai, B., Qin, G., Zhu, H., Fu, D., Luo, Y. and Zhu, B. (2015) MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnol. J. 13, 370-382.</Citation>
</Reference>
<Reference>
<Citation>Guo, G., Liu, X., Sun, F. et al. (2018) Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell, 30, 796-814.</Citation>
</Reference>
<Reference>
<Citation>Guo, C., Ma, X., Xing, Y. et al. (2020) Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell, 181(3), 621-636.e22.</Citation>
</Reference>
<Reference>
<Citation>Henriques, R., Wang, H., Liu, J., Boix, M., Huang, L.F. and Chua, N.H. (2017) The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 216, 854-867.</Citation>
</Reference>
<Reference>
<Citation>Hong, Y.H., Meng, J., He, X.L., Zhang, Y.Y. and Luan, Y.S. (2019) Overexpression of MiR482c in tomato induces enhanced susceptibility to late blight. Cells, 8, 822.</Citation>
</Reference>
<Reference>
<Citation>Hou, X., Cui, J., Liu, W., Jiang, N., Zhou, X., Qi, H., Meng, J. and Luan, Y. (2020) LncRNA39026 enhances tomato resistance to Phytophthora infestans by decoying miR168a and inducing PR genes expression. Phytopathology, 110, 873-880.</Citation>
</Reference>
<Reference>
<Citation>Hou, Y., Zhai, Y., Feng, L. et al. (2019) A phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe, 25, 153-165.</Citation>
</Reference>
<Reference>
<Citation>Jiang, N., Cui, J., Shi, Y., Yang, G., Zhou, X., Hou, X., Meng, J. and Luan, Y. (2019a) Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic. Res. 6, 28.</Citation>
</Reference>
<Reference>
<Citation>Jiang, N., Cui, J., Yang, G., He, X., Meng, J. and Luan, Y. (2019b) Comparative transcriptome analysis shows the defense response networks regulated by miR482b. Plant Cell Rep. 38, 1-13.</Citation>
</Reference>
<Reference>
<Citation>Jiang, Y., Guo, L., Liu, R., Jiao, B., Zhao, X., Ling, Z. and Luo, K. (2016) Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. PLoS One, 11, e0149137.</Citation>
</Reference>
<Reference>
<Citation>Jiang, N., Meng, J., Cui, J., Sun, G. and Luan, Y. (2018) Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic. Res. 5, 9.</Citation>
</Reference>
<Reference>
<Citation>Jia, T., Zhang, B., You, C., Zhang, Y., Zeng, L., Li, S., Johnson, K.C.M., Yu, B., Li, X. and Chen, X. (2017) The arabidopsis MOS4-associated complex promotes microRNA biogenesis and precursor messenger RNA splicing. Plant Cell, 29, 2626-2643.</Citation>
</Reference>
<Reference>
<Citation>Ji, H.M., Zhao, M., Gao, Y., Cao, X.X., Mao, H.Y., Zhou, Y., Fan, W.Y., Borkovich, K.A., Ouyang, S.Q. and Liu, P. (2018) FRG3, a target of slmiR482e-3p, provides resistance against the fungal pathogen Fusarium oxysporum in tomato. Front. Plant Sci. 9, 26.</Citation>
</Reference>
<Reference>
<Citation>Kuan, T., Zhai, Y. and Ma, W. (2016) Small RNAs regulate plant responses to filamentous pathogens. Semin. Cell Dev. Biol. 56, 190-200.</Citation>
</Reference>
<Reference>
<Citation>Li, F., Pignatta, D., Bendix, C., Brunkard, J.O., Cohn, M.M., Tung, J., Sun, H., Kumar, P. and Baker, B. (2012) MicroRNA regulation of plant innate immune receptors. Proc. Natl Acad. Sci. USA, 109, 1790-1795.</Citation>
</Reference>
<Reference>
<Citation>Li, J., Luan, Y. and Liu, Z. (2015) SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell Tiss. Organ. Cult. 123, 67-81.</Citation>
</Reference>
<Reference>
<Citation>Li, S., Liu, K., Zhou, B., Li, M., Zhang, S., Zeng, L., Zhang, C. and Yu, B. (2018b) MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell, 30, 481-494.</Citation>
</Reference>
<Reference>
<Citation>Li, R., Fu, D., Zhu, B., Luo, Y. and Zhu, H. (2018a) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J. 94, 513-524.</Citation>
</Reference>
<Reference>
<Citation>Liu, X., Li, D., Zhang, D. et al. (2018) A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol. 218, 774-788.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Ke, L., Wu, G., Xu, Y., Wu, X., Xia, R., Deng, X. and Xu, Q. (2017) miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. Plant J. 92, 263-275.</Citation>
</Reference>
<Reference>
<Citation>Luan, Y., Cui, J., Li, J., Jiang, N., Liu, P. and Meng, J. (2018) Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta, 247, 127-138.</Citation>
</Reference>
<Reference>
<Citation>Luan, Y., Cui, J., Wang, W. and Meng, J. (2016) MiR1918 enhances tomato sensitivity to Phytophthora infestans infection. Sci. Rep. 6, 35858.</Citation>
</Reference>
<Reference>
<Citation>Luan, Y., Cui, J., Zhai, J., Li, J., Han, L. and Meng, J. (2015) High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Planta, 241, 1405-1416.</Citation>
</Reference>
<Reference>
<Citation>Ma, W., Chen, C., Liu, Y., Zeng, M., Meyers, B.C., Li, J. and Xia, R. (2018) Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. New Phytol. 217, 1535-1550.</Citation>
</Reference>
<Reference>
<Citation>Ponjavic, J., Ponting, C.P. and Lunter, G. (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17, 556-565.</Citation>
</Reference>
<Reference>
<Citation>Qiao, Y., Liu, L., Xiong, Q. et al. (2013) Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45, 330-333.</Citation>
</Reference>
<Reference>
<Citation>Quan, M., Xiao, L., Lu, W., Liu, X., Song, F., Si, J., Du, Q. and Zhang, D. (2018) Association genetics in Populus reveal the allelic interactions of Pto-MIR167a and its targets in wood formation. Front. Plant Sci. 9, 744.</Citation>
</Reference>
<Reference>
<Citation>Seo, J.S., Diloknawarit, P., Park, B.S. and Chua, N.H. (2019) ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression. New Phytol. 221, 2067-2079.</Citation>
</Reference>
<Reference>
<Citation>Seo, J.S., Sun, H.X., Park, B.S., Huang, C.H., Yeh, S.D., Jung, C. and Chua, N.H. (2017) ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell, 29, 1024-1038.</Citation>
</Reference>
<Reference>
<Citation>Shi, B., Lin, L., Wang, S. et al. (2016) Identification and regulation of host genes related to Rice stripe virus symptom production. New Phytol. 209, 1106-1119.</Citation>
</Reference>
<Reference>
<Citation>Shivaprasad, P.V., Chen, H.M., Patel, K., Bond, D.M., Santos, B.A. and Baulcombe, D.C. (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell, 24, 859-874.</Citation>
</Reference>
<Reference>
<Citation>Sun, Y., Zhang, H., Fan, M., He, Y. and Guo, P. (2020) Genome-wide identification of long non-coding RNAs and circular RNAs reveal their ceRNA networks in response to cucumber green mottle mosaic virus infection in watermelon. Arch. Virol. 165(5), 1177-1190.</Citation>
</Reference>
<Reference>
<Citation>Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635-641.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Yang, Y., Jin, L., Ling, X., Liu, T., Chen, T., Ji, Y., Yu, W. and Zhang, B. (2018c) Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol. 18, 104.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Yu, W., Yang, Y., Li, X., Chen, T., Liu, T., Ma, N., Yang, X., Liu, R. and Zhang, B. (2015a) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 5, 16946.</Citation>
</Reference>
<Reference>
<Citation>Wang, T.Z., Liu, M., Zhao, M.G., Chen, R. and Zhang, W.H. (2015b) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol. 15, 131.</Citation>
</Reference>
<Reference>
<Citation>Wang, X., Ai, G., Zhang, C., Cui, L., Wang, J., Li, H., Zhang, J. and Ye, Z. (2016) Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol. 209, 1442-1455.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y.J., Wang, Y.L., Zhao, J., Huang, J.Y., Shi, Y.N. and Deng, D.X. (2018d) Unveiling gibberellin-responsive coding and long noncoding RNAs in maize. Plant Mol. Biol. 98, 427-438.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Ye, W. and Wang, Y. (2018a) Genome-wide identification of long non-coding RNAs suggests a potential association with effector gene transcription in Phytophthora sojae. Mol. Plant Pathol. 19, 2177-2186.</Citation>
</Reference>
<Reference>
<Citation>Wang, Z., Xia, Y., Lin, S. et al. (2018b) Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J. 95, 584-597.</Citation>
</Reference>
<Reference>
<Citation>Yang, F., Zhao, D., Fan, H., Zhu, X., Wang, Y., Liu, X., Duan, Y., Xuan, Y. and Chen, L. (2020) Functional analysis of long non-coding RNAs reveal their novel roles in biocontrol of bacteria-induced tomato resistance to Meloidogyne incognita. Int. J. Mol. Sci. 21, 911.</Citation>
</Reference>
<Reference>
<Citation>Yang, L., Mu, X., Liu, C., Cai, J., Shi, K., Zhu, W. and Yang, Q. (2015) Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J. Integr. Plant Biol. 57, 1078-1088.</Citation>
</Reference>
<Reference>
<Citation>Yang, Y., Liu, T., Shen, D. et al. (2019) Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog. 15, e1007534.</Citation>
</Reference>
<Reference>
<Citation>Zaynab, M., Fatima, M., Abbas, S., Umair, M., Sharif, Y. and Raza, M.A. (2018) Long non-coding RNAs as molecular players in plant defense against pathogens. Microb. Pathog. 121, 277-282.</Citation>
</Reference>
<Reference>
<Citation>Zhang, C., Liu, L., Zheng, Z. et al. (2013) Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theor. Appl. Genet. 126, 2643-2653.</Citation>
</Reference>
<Reference>
<Citation>Zhang, P., Jia, Y., Shi, J., Chen, C., Ye, W., Wang, Y., Ma, W. and Qiao, Y. (2019) The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. New Phytol. 223, 839-852.</Citation>
</Reference>
<Reference>
<Citation>Zhu, Q.H., Stephen, S., Taylor, J., Helliwell, C.A. and Wang, M.B. (2014) Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol. 201, 574-584.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Xia, R., Kuang, H. and Meyers, B.C. (2016) The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol. Biol. Evol. 33, 2692-2705.</Citation>
</Reference>
<Reference>
<Citation>Zhu, B., Yang, Y., Li, R., Fu, D., Wen, L., Luo, Y. and Zhu, H. (2015) RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J. Exp. Bot. 66, 4483-4495.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jiang, Ning" sort="Jiang, Ning" uniqKey="Jiang N" first="Ning" last="Jiang">Ning Jiang</name>
</noRegion>
<name sortKey="Cui, Jun" sort="Cui, Jun" uniqKey="Cui J" first="Jun" last="Cui">Jun Cui</name>
<name sortKey="Han, Lu" sort="Han, Lu" uniqKey="Han L" first="Lu" last="Han">Lu Han</name>
<name sortKey="Hou, Xinxin" sort="Hou, Xinxin" uniqKey="Hou X" first="Xinxin" last="Hou">Xinxin Hou</name>
<name sortKey="Luan, Yushi" sort="Luan, Yushi" uniqKey="Luan Y" first="Yushi" last="Luan">Yushi Luan</name>
<name sortKey="Meng, Jun" sort="Meng, Jun" uniqKey="Meng J" first="Jun" last="Meng">Jun Meng</name>
<name sortKey="Xiao, Yu" sort="Xiao, Yu" uniqKey="Xiao Y" first="Yu" last="Xiao">Yu Xiao</name>
<name sortKey="Yang, Guanglei" sort="Yang, Guanglei" uniqKey="Yang G" first="Guanglei" last="Yang">Guanglei Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000056 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000056 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32432801
   |texte=   Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32432801" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024